Tag Archives: medicine

Last Man on Earth

Pterodactyl

…Then the Pterodactyl burst upon the world in all his impressive solemnity and grandeur, and all Nature recognized that the Cainozoic threshold was crossed and a new Period open for business, a new stage begun in the preparation of the globe for man. It may be that the Pterodactyl thought the thirty million years had been intended as a preparation for himself, for there was nothing too foolish for a Pterodactyl to imagine, but he was in error, the preparation was for Man…  — Mark Twain

Lance Armstrong

The Man. The man who won Tour de France seven times. Having reached the human limit of physical capabilities, he [and others] extended them. He did blood doping (by taking EPO and other drugs, storing own blood in the fridge, and infusing it before the competition for boosting the number of red blood cells, thus performance). He [and others] took anti asthmatic drugs to increases performance on endurance. And so on, so on. There are Yes or No answers from Lance himself from Oprah’s interview.

Is Lance cheater? Or is Lance hero? I consider him a hero for two reasons. First, he competed against the same or similar. Second, he went beyond the human limits, cutting-edge thinking, cutting-edge behavior, scientific sacrifice, calculated or even bold risk.

What could be said about all other sportsmen? I think the sporting pharmacology is evolutionary logical stage for the humankind to outperform our ancestors, to break the records, to win, and continue winning. If sportsmen are specialized in competing, and society wants them competing, then everything all set. Evolution goes on, biological meets artificial chemical. It improves the function, it solves the problem. Though it slightly distance biological ourselves from what we though we were.

Prosthetics

It happens that people lose body parts. It is right way to go to give them missing parts. It’s still very complicated, the technologies involved are still not there, but good progress has been made. There are new materials, new mechanics, new production (digital manufacturing, 3D printing), new bio-signal processing (complex myogram readings), new software designed (with AI), and all together it gives tangible result. Take a look at this robot, integrated with the man:

Some ethical questions emerge. The man with prosthetic body part is still a biological being? What is a threshold between biological parts and synthetic parts to be considered a human being? There are people without arms and legs, because of injuries or because of genetic diseases, like Torso Man. We could and should re-create the missing parts and continue living as before, using our new parts. Bionic parts must evolve until they feel and perform identically to original biological parts.

It relates to invisible organs too. The heart, which happen to be a pump, not a soul keeper. People live with artificial hearts. Look at the man walking out from hospital without human heart. The kidneys, which are served by external hemodialysis machines. New research is performed to embed kidney robots into the body. Ethical questions continue, where is a boundary what we call a ‘human’? Is it head? Or brain only? What makes us human to other humans?

Genetics

We are defined by our genes. Our biological capabilities are on genes. Then we learn and train to build on top of our given foundation. We are different by genes, hence something that is easy for one could be difficult for another. E.g. since childhood sportsmen usually have better metabolism in comparison to those who grow to ‘office plankton’.

There are diseases caused by harmful mutations on genes. Actually any mutation is bad, because of unpredictable results in first generation with new mutant [gene]. But some mutations are bad from generation to generation, called genetic disease. It is possible to track many diseases down to the genes. There are Genetic Browsers allowing to look into the genome down to the DNA chain. Take a look at the CFTR gene, first snapshot is high-level view, with chromosome number and position; second is zoomed to the base, with ACGT chain visible.

CFTR1

CFTR2

If parents with genetic disease want to prevent their child from that disease, they may want to fix the known gene. Everything else [genetically] will remain naturally biological, but only that one mutant will be fixed to the normal. The kid will not have the disease of ancestors, which is good. A question emerges: is this kid fully biological? How that genetic engineering impacts established social norms?

What if parents are fans of Lance Armstrong and decide to edit more genes, to make their future kid a good sportsman?

What is Life?

Digging down to the DNA level, it is very interesting to figure out what is possible there to improve ourselves, and what is life at all. How to recognize life? How would we recognize life on Mars, if it’s present there?

Here is definition from Wikipedia: “The definition of life is controversial. The current definition is that organisms maintain homeostasis, are composed of cells, undergo metabolism, can grow, adapt to their environment, respond to stimuli, and reproduce.” The very first sentence resonate with questions we are asking…

Craig Venter led the team of scientists to extract the genetic material from the cell (Mycoplasma genitalium), instrumented its genome by inserting the names of 20 scientists and the link to the web site, implanted edited material back into the cell, observed the cell reproducing many times. Their result – Mycoplasma laboratorium – reproduced billions times, passing encoded info through generations. The cell had ~470 genes.

What is absolutely minimum number of genes, and what are those genes, to create life? Is it 150? Or less? And which one exactly? What are their specialization/functions? It’s current on-going experiment… Good luck guys! Looking forward to your research success, and what is Minimum Viable Life (MVL). BTW by doing this experiment, scientists designed new technologies and tools, allowing to model the genes programmatically, and then synthesize them at molecular level.

Here Come the Robots

While somebody are digging into the genome, others are trying to replicate humans (and other creatures) at macro level. Most successful with humanoid machines are Boston Dynamics.

rxqdzyg4m7cbmyhxl1rj

How far we are to make them indistinguishable from humans? Seems that pretty far. The weight, the gravity center, motion, gestures, look & feel are still not there. I bet that humanoids will be first create in military and porn. Military will need robots to operate plenty of outdated military equipment, serve and combat in hazard environments.  it’s only old weaponry that require manned control. While new weapons are designed to operate unmanned. Porn will evolve to the level that we will fuck the robots. For military it’s more the economical need. For our leisure it’s romantic need and personal experience.

The size and shape of robots doing mechanical work is so different. From tunnel drilling monsters to blood vessels…

All 8 Together

If we look for the commonality in mentioned (and several unmentioned) disrupting technologies, we could select 8 of them (extended and reworked 8 directions of Singularity Univeristy), which stand out:

  • Biology and Biotech
  • Medicine and Longevity
  • Robotics
  • Network and Sensors
  • Fabrication and 3D Printing
  • Nanotech and Materials
  • Computing
  • Artificial Intelligence

As we slightly covered Biology, Medicine and Robotics already, more to be said about the rest. But before than, few words about Biotech. We could program new behavior of the biomass, by engineering what the cells must produce, and use those biorobots to clean the landfills around the cities,  sewerage, rivers, seas, maybe air. Biorobots also could clean our organisms, inside and outside. Specially engineered micro biorobots could eat the Mars stones and produce the atmosphere there. Not so fast but feasible.

Well, more words about other disrupting technologies. Networks and Sensors next. First of all – it’s about networks between human & human, machine & machine, human & machine. The network effect happens within the network, known as Metcalfe’s Law. Networks are wired and wireless, synchronous and asynchronous, local and geographically distributed, static and dynamic mesh etc. Very promising are Mesh Networks, allowing to avoid Thing-Cloud aka Client-Server architectures, despite all cloud providers pushes for that. Architecturally (and common sense) it’s better to establish the mesh locally, with redundancy and specialization of nodes, and relay the data between the mesh and the cloud via some edge device, which could be dynamically selected.

Sensors will be everywhere. Within interior, on the body, as infrastructure of the streets, in ambient environment, in the food etc. Our life is improved when we sense/measure and proactively prepare. We used to weather forecasts, which are very precise for a day or two. It’s because of huge amount of land sensors, air sensors, satellite imagery. Body sensors are gaining popularity, as wearables for quantified self. There are recommendations for the lifestyle, based of your body readings. It’s early and primitive today, but it will dramatically improve with more data recorded and analyzed. Modern transportation requires more sensors within/along the roads and streets, and cars. It’s evolving. Miniaturization shapes them all. Those sensors must be invisible for the eyes, and fully integrated into the cloths and machines and environment.

3D Printing. The biggest change is related to ownership of intellectual property. 3D model will be the thing, while its replication at any location on demand on any printer will be commodity function. Many things became digital: books, photos, movies, games. Many things are becoming digital: hard goods, food, organs, genome. It’s a matter of time when we have cheap technology capable to synthesize at the atom grid level and molecular. New materials are needed everywhere, especially for human augmentation, for energy storing and for computing.

Nanotech. We learn to engineer at the scale of 10^-9 meter. From non-stick cookware and self restoring paint (for cars), to sunscreen and nanorobots for cleaning our veins, to new computing chips. Nano & Bio are very related, as purification and cleanup processes for industry and environment are being redesigned at nano level. Nano & 3D Printing are related too, as ultimate result will be affordable nanofactory for everyone.

Computing. We’re approaching disruption here, Moore’s Law is still there but it’s slowing down and the end is visible. Some breakthrough required. Hegemony of Intel is being challenged by IBM with POWER8 (and obviously almost ready POWER9) and ARM (v8 chips). Google is experimenting with POWER and ARM. it’s true, Qualcomm is pushing with ARM-based servers. D:Wave is pioneering Quantum Computing (actually it’s superconductivity computing). There is good intro in my Quantum Hello World post. IBM recently opened access to own quantum analog. The bottom line is that we need more computing capacity, it must be elastic, and we want it cheaper.

Artificial Intelligence. AI deserves separate chapter. Here it is.

Artificial Intelligence

I blended my thoughts and my impressions from The Second Machine Age, How to Think About Machines that Think, forthcoming The Inevitable, and various other sources that had impact on me.

AI

The purpose of AI was machine making decisions ( as maximization of reward function). But being better at making decisions != making better decisions. Machine decide how to translate English-to-Ukrainian, but not speaking either language. Those programs (and machines) are super screwdrivers, they don’t what to do, we want them to do, we put our want into them.

AI is different intelligence, human cannot recognize 1 billion humans, even really having seen them all many times. AI is Another Intelligence so far. The shape of thinking machines is not human at all: DeepBlue – chess winner – is a toll black box; Watson – Jeopardy winner – 2 units of 5 racks of 10 POWER7 servers between noisy refrigerators in nice alien blue light (watch from 2:20); Facebook Faces – programs and machines recognizing billions of human faces – it’s probably big racks in data center, Google Images – describing context of the image – big part of the data center (detection of cat took 16,000 servers several years ago); Space Probes – totally different from both humans and black toll boxes in the data centers.

BTW if somebody really spots UFO visiting our planet, don’t expect green men, as organics is poor for space travel, because of dangerous +200/-200 Celsius temperature range, ultra violet and radiation, time needed for travel (even through the wormhole)… That UFO is a robot most probably. Or intelligence on non-biological carrier, which means post-biological species (which is worse for us if so).

Our wet brain operates at 100 Watts, while the copy of the simulation of the same number of cells requires 10^12 Watts. Where on Earth will we get 1 trillion watts just for equivalent of one human intelligence? Even not intelligence, but connectivity of the neurons. Isn’t it ridiculous pseudo architecture? We still did not isolate what we call consciousness, and we don’t know it’s structure to properly model it. Brain scanning is in progress, especially for deeper brain. And this Eureka moment, like we got with DNA, is still to come.

We’re remaining at the center, creating and using machines for mental work, like we created and used/use machines for physical work. Humans with new mental tools should perform better than without them. Google is a typical memory machine, and memory prosthesis. Watson as a layer or a doctor is a reality.

Back from the future, at present we have intelligent machines – governments and corporations. We created those artificial bodies many years ago, and just don’t realize they are true intelligent machines. They are integrated into/with society, with law evolved through precedents and legislation, tailored to different locations and cultures. Culture itself is a natural artificial intelligence. Global biological artificial intelligence emerged on politicians, lawyers, organizations like United Nations and hundreds of smaller international ones. They are all candidates for substitution by programs and machines.

Interesting observation is that most intelligent humans neither harmful nor rulers of others. Hence we could assume that really smart AI will not be harmful to humans, when AI will be approximately at our level. But it’s uncertain about accelerated and grown AI later in time. Evolution will shape AI too, continuing from invisible interfaces with machines right now. We could stop clicking, typing, tapping into machines, and talk to them like we do between ourselves. Today we have three streams of AI: < 3yo AI, Artificial Smartness, Intelligence as a Service.

We are what we eat, hence they will have to eat us? Hm… Real AI will not reveal itself. And most probably they will leave, like we left our cradle Africa…

Exponential Today

There were some concerns that we had slowed down, by observations and perception of the daily facts. But it’s also visible that several technologies are booming and disrupting our lives almost on weekly basis. Those 8 mentioned earlier technologies in section It All Together. Those technologies are developing exponentially.

The companies are highly specializing within their niches, performing at global scale. Global economy is changing. Few best providers of the narrow function do it world-wide. E.g. Google is serving search globally, with two others far behind (Baidu and Bing, with artificial restriction of Google in China). Illumina chips are used for gene sequencing (90 percent of DNA data produced). Intel chips are primary host processors in the servers. Nvidia are primary coprocessors and so on. Few companies fulfill the 95+ percent of the needs within some niche. Where this has not happen yet, big disruption is expected soon.

before_now

This is pure specialization of work at global scale. Shift from normal distribution to power distribution. Some may say that it’s path to global monopolism, with artificially hold high costs. But in fact it is not, as Google search is free. Illumina is promising full human genome sequenced under $1,000. And Intel still ships new chips according to Moore’s Law, 2x productivity per $1 every 1.5 year.

As global specialization reduces global costs, because same functions and products are produced more efficiently on same resources, it is good for our planet, with limited resources. But here another thing happens, we are not preserving resources, we are using them for creating new technologies, which are expensive, unique, disrupting. Provider of such new technology (and product, service) is not a monopolist, because of small scale/capacity at the beginning. Either they scale or others replicate it, and true leader emerges and make it globally. Also new ways for energy are found, from Sun and wind, and new nuclear too. We’re creating more wealth.

now

Digitization

Scaling globally is dramatically easier and cheaper  for digital products and services, than for physical/hard or hybrid. It is main motivator for digitization of everything. Software is eating the world, because it is simply cheaper to deliver sw vs. hw. Everything will become software, except the hardware to run the software, and power plants to empower the hardware.

Real life is becoming digital very fast. Why we’re taking photos of our meals and rooms, self faces and legs, beautiful  and creepy landscapes, compositions? Why we checkin, express status, emotions for others’ expressed statuses, commenting, trolling and even fighting digitally? We also voting, declaring, reporting, learning, curing, buying and consuming, entertaining digitally too. We’re living digitally more than physically sometimes. Notice how people record the event looking at their smartphone small screen instead of looking at the big stage and experience it better. Some motivation drives us to record it to multiple phones, from multiple locations, aspects, angles, distances, and push it into the internet, and share with others. Then see it all from those recordings, own and theirs. Why is it happening? Why we are shifting to digital over natural? Or digital is new natural, as evolution goes on?

Kit Harington was stopped by cop for speeding. The cop made ultimatum – either driver pays fine, or he tells whether Jon Snow is alive in next season. The driver avoided the speeding ticket by telling the virtual/digital story to the cop. For the cop digital virtual was more important than physical biological. Isn’t it natural shift to new better reality?

Many people live is virtual worlds today. Take American and ask about ISIS. Take Syrian and ask about ISIS. Take Ukrainian and ask about Crimea and Donbass. Take Russian and ask about Crimea and Donbass. Same for Israel and Palestina. People will tell opposite everything. People are already living in virtual worlds, created by digital television and internet. Digitization of life is here already, and we are there already.

One

Specialization is observed at all levels. Molecules specialized into water, gases, salts, acids. Bigger molecules specialized into proteins and DNA. Then we have cells, stem cell and their specialization into connective tissue, soft tissue, bone and so on. Next are organs. Then body parts. Specialization is present at each abstraction level. At the level of people specialization is known as roles and professions. Between businesses and countries it is industries. Between nations it is economics and politics.

It looks like we are part of the bigger machine, which is evolving with acceleration. We are like cells, good and bad, specialized from vision to thinking. Roads, pipes are like transportation systems for other cells and payload. Internet (copper and fiber) is more like a neural system. Connectivity is a true phenomenon. We are now fully disconnected (and useless) without smartphone, or without digital social network in any form. Kevin Kelly once called it the One. The Earth of many people will evolve into earth of augmented people and machines, they all specialize and unite into the One.

one

And since the One, it all looks like just a beginning. I feel another One, and more cells-ones, organizing something more complex and intelligent from themselves. If our cells could specialize and unite into 10 trillions and walk, think, write, why it can’t be possible with bigger cells like One, at bigger scale like Galaxy?

The Man is not the last smart species on Earth. In other words, there will be a day, when the Last [current] Man on Earth goes extinct. What will happen faster: transhuman or true AI, that could replicate and grow? I bet on transhuman. Better for humanity too. For now.

 

Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Next Five Years of Healthcare

This insight is related to all of you and your children and relatives. It is about the health and healthcare. I feel confident to envision the progress for five years, but cautious to guess for longer. Even next five years seem pretty exciting and revolutionary. Hope you will enjoy they pathway.

We have problems today

I will not bind this to any country, hence American readers will not find Obamacare, ACO or HIE here. I will go globally as I like to do.

The old industry of healthcare still sucks. It sucks everywhere in the world. The problem is in uncertainty of our [human] nature. It’s a paradox: the medicine is one of the oldest practices and sciences, but nowadays it is one of least mature. We still don’t know for sure why and how are bodies and souls operate. The reverse engineering should continue until we gain the complete knowledge.

I believe there were civilisations tens of thousands years ago… but let’s concentrate on ours. It took many years to start in-depth studying ourselves. Leonardo da Vinci did breakthrough into anatomy in early 1500s. The accuracy of his anatomical sketches are amazing. Why didn’t others draw at the same level of perfection? The first heart transplant was performed only in 1967 in Cape Town by Christiaan Barnard. Today we are still weak at brain surgeries, even the knowledge how brain works and what is it. Paul Allen significantly contributed to the mapping of the brain. The ambitious Human Genome project was performed only in early 2000s, with 92% of sampling at 99.99% accuracy. Today, there is no clear vision or understanding what majority of DNA is for. I personally do not believe into Junk DNA, and ENCODE project confirmed it might be related to the protein regulation. Hence there is still plenty of work to complete…

But even with the current medical knowledge the healthcare could be better. Very often the patient is admitted from the scratch as a new one. Almost always the patient is discharged without proper monitoring of the medication, nutrition, behaviour and lifestyle. There are no mechanisms, practices or regulations to make it possible. For sure there are some post-discharge recommendations, assignments to the aftercare professionals, but it is immature and very inaccurate in comparison to what it could be. There are glimpses of telemedicine, but it is still very immature.

And finally, the healthcare industry in comparison to other industries such as retail, media, leisure and tourism is far behind in terms of consumer orientation. Even automotive industry is more consumer oriented than healthcare today. Economically speaking, there must be transformation to the consumer centric model. It is the same winning pattern across the industries. It [consumerism] should emerge in healthcare too. Enough about the current problems, let’s switch to the positive things – technology available!

There could be Care Anywhere

We need care anywhere. Either it is underground in the diamond mine, or in the ocean on-board of Queen Mary 2, or in the medical center or at home, at secluded places, or in the car, bus, train or plane.

There is wireless network (from cell providers), there are wearable medical devices, there is a smartphone as a man-in-the-middle to connect with the back-end. It is obvious that diagnostics and prevention, especially for the chronical diseases and emergency cases (first aid, paramedics) could be improved.

care anywhere

I personally experienced two emergency landings, once by being on-board of the six hour flight, second time by driving for the colleague to another airport. The impact is significant. Imagine that 300+ people landed in Canada, then according to the Canadian law all luggage was unloaded, moved to X-ray, then loaded again; we all lost few hours because of somebody’s heart attack.

It could be prevented it the passenger had heart monitor, blood pressure monitor, other devices and they would trigger the alarm to take the pill or ask the crew for the pill in time. The best case is that all wearable devices are linked to the smartphone [it is often allowed to turn on Bluetooth or Wi-Fi in airplane mode]. Then the app would ring and display recommendations to the passenger.

4P aka Four P’s

The medicine should go Personal, Predictive, Preventive and Participatory. It will become so in five years.

Personal is already partially explained above. Besides consumerism, which is a social or economic aspect, there should be really biological personal aspect. We all are different by ~6 million genes. That biological difference does matter. It defines the carrier status for illnesses, it is related to risks of the illnesses, it is related to individual drug response and it uncovers other health-related traits [such as Lactose Intolerance or Alcohol Addiction].

Personal medicine is an equivalent to the Mobile Health. Because you are in motion and you are unique. The single sufficiently smart device you carry with you everywhere is a smartphone. Other wearable devices are still not connected [directly into the Internet of Things]. Hence you have to use them all with the smartphone in the middle.

The shift is from volume to value. From pay to procedures to pay for performance. The model becomes outcome based. The challenge is how to measure performance: good treatment vs. poor bedside, poor treatment vs. good bedside and so on.

Predictive is a pathway to the healthcare transformation. As healthcare experts say: “the providers are flying blind”. There is no good integration and interoperability between providers and even within a single provider. The only rationale way to “open the eyes” is analytics. Descriptive analytics to get a snapshot of what is going on, predictive analytics to foresee the near future and make right decisions, and prescriptive analytics to know even better the reasoning of the future things.

Why there is still no good interoperability? Why there is no wide HL7 adoption? How many years have gone since those initiatives and standards? My personal opinion is that the current [and former] interoperability efforts are the dead end. The rationale is simple: if it worth to be done, it would be already done. There might be something in the middle – the providers will implement interoperability within themselves, but not at the scale of the state or country or globally.

Two reasons for “dead interop”. First is business related. Why should I share my stuff with others? I spent on expensive labs or scans, I don’t want others to benefit from my investments into this patient treatment. Second is breakthrough in genomics and proteomics. Only 20 minutes needed to purify the DNA from the body liquids with Zymo Research DNA Kit. Genome in 15 minutes under $100 has been planned by Pacific Biosciences by this year. Intel invested 100 million dollars into Pacific Biosciences in 2008. Besides gene mechanisms, there are others, not related to DNA change. They are also useful for analysis, predicting and decision making per individual patient. [Read about epigenetics for more details]. There is a third reason – Artificial Intelligence. We already classify with AI, very soon will put much more responsibility onto AI.

Preventive is very interesting transformation, because it is blurring the boarders between treatment and behaviour/lifestyle/wellness and between drugs and nutrition. It is directly related to the chronic diseases and to post-discharge aftercare, even self aftercare. To prevent from readmission the patient should take proper medication, adjust her behaviour and lifestyle, consume special nutrition. E.g. diabetes patients should eat special sugar-free meal. There is a question where drug ends and where nutrition starts? What Coca Cola Diet is? First step towards the drugs?

Pharmacogenomics is on the rise to do proactive steps into the future, with known individual’s response to the drugs. It is both predictive and preventive. It will be normal that mass universal drugs will start to disappear, while narrowly targeted drugs will be designed. Personal drugs is a next step, when the patient is a foundation for almost exclusive treatment.

Participatory is interesting in the way that non-healthcare organisations become related to the healthcare. P&G produce sun screens, designed by skin type [at molecular level], for older people and for children. Nestle produces dietary food. And recall there are Johnson & Johnson, Unilever and even Coca Cola. I strongly recommend to investigate PWC Health practice for the insights and analysis.

Personal Starts from Wearable

The most important driver for the adoption of wearable medical devices is ageing population. The average age of the population increases, while the mobility of the population decreases. People need access to healthcare from everywhere, and at lower cost [for those who retired]. Chronic diseases are related to the ageing population too. Chronic diseases require constant control, interventions of physician in case of high or low measurements. Such control is possible via multiple medical devices. Many of them are smartphone-enabled, where corresponding application runs and “decides” what to tell to the user.

Glucose meter is much smaller now, here is a slick one from iBGStar. Heart rate monitors are available in plenty of choices. Fitness trackers and dietary apps are present as vast majority of [mobile health] apps in the stores. Wrist bands are becoming the element of lifestyle, especially with fashionably designed Jawbone Up. Triceps band BodyMedia is good for calories tracking. Add here wireless weight… I’ve described gadgets and principles in previous posts Wearable Technology and Wearable Technology, Part II. Here I’d like to distinguish Scanadu Scout, measuring vitals like temperature, heart rate, oxymetry [saturation of your hemoglobin], ECG, HRV, PWTT, UA [urine analysis] and mood/stress. Just put appropriate gadgets onto your body, gather data, analyse and apply predictive analytics to react or to prevent.

anything_s

Personal is a Future of Medicine

If you think about all those personal gadgets and brick mobile phones as sub-niche within medicine, then you are deeply mistaken. Because the medicine itself will become personal as a whole. It is a five year transition from what we have to what should be [and will be]. Computer disappears, into the pocket and into the cloud. All pocket sized and wearable gadgets will miniaturise, while cloud farms of servers will grow and run much smarter AI.

Everybody of us will become a “thing” within the Internet of Things. IoT is not a Facebook [it’s too primitive], but it is quantified and connected you, to the intelligent health cloud, and sometimes to the physicians and other people [patients like you]. This will happen within next 5-10 years, I think rather sooner or later. The technology changes within few years. There were no tablets 3.5 years ago, now we have plenty of them and even new bendable prototypes. Today we experience first wearable breakthroughs, imagine how it will advance within next 3 years. Remember we are accelerating, the technology is accelerating. Much more to come and it will change out lives. I hope it will transform the healthcare dramatically. Many current problems will become obsolete via new emerging alternatives.

Predictive & Preventive is AI

Both are AI. Period. Providers must employ strong mathematicians and physicists and other scientists to create smarter AI. Google works on duplication of the human brain on non-biological carrier. Qualcomm designs neuro chips. IBM demonstrated brainlike computing. Their new computing architecture is called TrueNorth.

Other healthcare participatory providers [technology companies, ISVs, food and beverage companies, consumer goods companies, pharma and life sciences] must adopt strong AI discipline, because all future solutions will deal with extreme data [even All Data], which is impossible to tame with usual tools. Forget simple business logic of if/else/loop. Get ready for the massive grid computing by AI engines. You might need to recall all math you was taught and multiply it 100x. [In case of poor math background get ready to 1000x efforts]

Education is a Pathway

Both patients and providers must learn genetics, epigenetics, genomics, proteomics, pharmacogenomics. Right now we don’t have enough physicians to translate your voluntarily made DNA analysis [by 23andme] to personal treatment. There are advanced genetic labs that takes your genealogy and markers to calculate the risks of diseases. It should be simpler in the future. And it will go through the education.

Five years is a time frame for the new student to become a new physician. Actually slightly more needed [for residency and fellowship], but we could consider first observable changes in five years from today. You should start learning it all for your own needs right now, because you also must be educated to bring better healthcare to ourselves!

 

Tagged , , , , , , , , , , , , , , , ,

Mobile EMR, Part V

Some time ago I’ve described ideation about mobile EMR/EHR for the medical professionals. We’ve come up with tablet concept first. EMR/EHR is rendered on iPad and Android tablets. Look & feel is identical. iPad feels better than Samsung Galaxy. Read about tablet EMR from four previous posts. BTW one of them contains feedback from Edward Tufte:) Mobile EMR Part I, Part II, Part III, Part IV.

We’ve moved further and designed a concept of hand-sized version of the EMR/EHR. It is rendered on iPhone and Android phones. This post is dedicated to the phone version. As you will see, the overall UI organization is significantly different from tablet, while reuse of smaller components is feasible between tablets and phones. Phone version is totally SoftServe’s design, hence we carry responsibility for design decisions made there. For sure we tried to keep both tablet and phone concepts consistent in style and feel. You could judge how good we accomplished it by comparing yourself:)

Patients

The lack of screen space forces to introduce a list of patients. The list is vertically scrolled. The tap on the patient takes you to the patient details screen. It is possible to add very basic info for each patient at the patient list screen, but not much. Cases with long patient names simply leave no space for more info. I think that admission date, age and sex labels must be present on the patient list in any case. We will add them in next version. Red circular notification signals about availability of new information for the patient. E.g. new labs ready or important significant event has been reported. The concept of interaction design supposes that medical professional will click on the patient marked with notifications. On the other hand, the list of patients is ordered per user. MD can reorder the list via drag’n’drop.

Patient list

Patient list

MD can scan the wristband to identify the patient.

Wristband scanning

Wristband scanning

Patient details

MD goes to the patient details by tapping the patient from the list. That screen is called Patient Profile. It is long screen. There is a stack of Vital Signs right on top of the screen. Vital Signs widget is totally reused from tablets on the phones. It fits into the phone screen width perfectly. Then there is Meds section. The last section is Clinical Visits & Hospitalization chart. It is interactive (zoomable) like on iPad. Within single patient MD gets multiple options. First options is to scroll the screen down to see all information and entry points for more info available there. Notice a menu bar at the bottom of the screen. MD can prefer going directly to Labs, Charts, Imagery or Events. The interaction is organized as via tabs. Default tab is patient Profile.

Patient profile

Patient profile

Patient profile, continued

Patient profile, continued

Patient profile, continued

Patient profile, continued

Labs

There is not much space for the tables. Furthermore, labs results are clickable, hence the size of the rows should be relative to the size of the the finger tap. Most recent labs numbers are highlighted with bold. Deviation from the normal range is highlighted with red color. It is possible to have the most recent labs numbers of the left and on the right of the table. It’s configurable. The red circular notification on the Labs menu/tab informs with the number how many new results available since last view on this patient.

Labs

Labs

Measurements

Here we reuse ‘All Data’ charts smoothly. They perfectly fit into the phone screen. The layout is two-column with scrolling down. The charts with notifications about new data are highlighted. MD can reorder charts as she prefers. MD can manage the list of charts too by switching them on and off from the app settings. There could be grouping of charts based on the diagnosis. We consider this for next versions. Reminder about the chart structure. Rightmost biggest part of the chart renders most recent data, since admission, with dynamics. Min/max depicted with blue dots, latest value depicted with red dot. Chart title also has the numeric value in red to be logically linked with the dot on the chart. Left thin part of the chart consist of two sections: previous year data, and old data prior last year (if such data available). Only deviations and anomalies are meaningful from those periods. Extreme measurements are comparable thru the entire timeline, while precise dynamics is shown for the current period only. More information about the ‘All Data’ concept could be found in Mobile EMR, Part I.

Measurements in 'All Data' charts

Measurements in ‘All Data’ charts

Tapping on the chart brings detailed chart.

Measurement details

Measurement details

Imagery

There was no a big deal to design entry point into the imagery. Just two-column with scroll down layout, like for the Measurements. Tap on the image brings separate screen, completely dedicated to that image preview. For the huge scans (4GB or so) we reused our BigImage solution, to achieve smooth image zoom in and zoom out, like Google Maps, but for medical imagery.

Imagery

Imagery

Tissue scan, zoom in

Tissue scan, zoom in

Significant events & notes

Just separate screen for them…

Significant events

Significant events

Conclusion: it’s BI framework

Entire back-end logic is reused between tablet and phone versions on EMR. Vital Signs and ‘All Data’ charts are reusable as is. Clinical Visits & Hospitalization chart is cut to shorter width, but reused easily too. Security components for data encryption, compression are reused. Caching reused. Push notification reused. Wristband scanning reused. Labs partially reused. Measurements reused. BigImage reused.

Reusability is physical and logical. For the medical professional, all this stuff is technology agnostic. MD see Vital Signs on iPad, Android tablet, iPhone and Android phone as a same component. For geeks, it is obvious that reusability happens within the platform, iOS and Android. All widgets are reusable between iPad and iPhone, and between Samsung Galaxy tab and Samsung Galaxy phone. Cloud/SaaS stuff, such as BigImage is reusable on all platforms, because it Web-based and rendered in Web containers, which are already present on each technology platform.

Most important conclusion is a fact that mEMR is a proof of BI Framework, suitable for any other industry. Any professional can consume almost real-time analytics from her smartphone. Our concept demonstrated how to deliver highly condensed related data series with dynamics and synergy for proper analysis and decision making by professional; solution for huge imagery delivery on any front-end. Text delivery is simple:) We will continue with concept research at the waves of technology: BI, Mobility, UX, Cloud; and within digitizing industries: Health Care, Biotech, Pharma, Education, Manufacturing. Stay tuned to hear about Electronic Batch Record (EBR).

Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Mobile EMR, Part III

This is continuation of previous posts Mobile EMR, Part I and Mobile EMR, Part II

We’ve met with Mr.Tufte and demo’ed this EMR concept. He played with it for a while and suggested list of improvements, from his point of view.

‘All Data’ charts

Edward Tufte insists that sparklines work better than dots. It is OK that sparklines will be of different sizes. It is natural that each measurement has its own normal range. Initially we tried to switch the charts to the lines, but then we rolled back. Seems that we should make this feature configurable, and use sparklines by default. But if some MD wants dots, she can manually switch it in app settings.

Partially our EMR concept has been switched to sparklines – for display of Vital Signs. Below is a snapshot:

Vital Signs

One more thing related to the Vital Signs, we did great by separating on the widget on top, and grouping them together. It adds much value, because they are related to each other. It is important to see what happened to them at each moment. Our approach, based on user testing, appeared to be a winning one!

Space

Current use of the space could be improved even more. First reason is that biggest value of that research was keeping ‘All Information’ on single screen. Human eye recognizes perfectly which type of information is needed. All space is tessellated into multiple locuses of attention. Then human eye locks the desired locus and then focuses within that locus. Second reason is iPad resolution. We can squeeze more from retina resolution without degradation of usability (like size of labels and numbers). It is possible to scale to the newspaper typography on iPad, hence fit more information into the screen estate.

Genogram

This confirms the modern trend to genetics and genetic engineering. Genogram is a special type of diagram, visualizing patient’s family relationships and medical history. In medicine, medical genograms provide a quick and useful context in which to evaluate an individual’s health risks. Many new treatments are tailored by genotype of the patients. E.g. Steve Jobs’s cancer was periodically sequenced and brand new proteins where applied, to prevent disease spread. All cells are built from the proteins, reading other proteins as instructions. This is true for the cancer cells. Thus if they read instructions from fake proteins, then they can not build themselves properly. We like this idea immediately, because its value is instant and big, its importance is as high as allergy. Below is sample genogram, using special markers for genetically influenced diseases.

Sample Genogram

There are other cosmetic observations which will be improved shortly. We continue usability testing with medical doctors. More to come. It could be Mobile EMR on iPhone. Stay tuned.

UPDATE: Continued on Mobile EMR, Part IV.

Tagged , , , , , , , , , , , , , , , , , , , , , , ,