Tag Archives: fabrication

Last Man on Earth

Pterodactyl

…Then the Pterodactyl burst upon the world in all his impressive solemnity and grandeur, and all Nature recognized that the Cainozoic threshold was crossed and a new Period open for business, a new stage begun in the preparation of the globe for man. It may be that the Pterodactyl thought the thirty million years had been intended as a preparation for himself, for there was nothing too foolish for a Pterodactyl to imagine, but he was in error, the preparation was for Man…  — Mark Twain

Lance Armstrong

The Man. The man who won Tour de France seven times. Having reached the human limit of physical capabilities, he [and others] extended them. He did blood doping (by taking EPO and other drugs, storing own blood in the fridge, and infusing it before the competition for boosting the number of red blood cells, thus performance). He [and others] took anti asthmatic drugs to increases performance on endurance. And so on, so on. There are Yes or No answers from Lance himself from Oprah’s interview.

Is Lance cheater? Or is Lance hero? I consider him a hero for two reasons. First, he competed against the same or similar. Second, he went beyond the human limits, cutting-edge thinking, cutting-edge behavior, scientific sacrifice, calculated or even bold risk.

What could be said about all other sportsmen? I think the sporting pharmacology is evolutionary logical stage for the humankind to outperform our ancestors, to break the records, to win, and continue winning. If sportsmen are specialized in competing, and society wants them competing, then everything all set. Evolution goes on, biological meets artificial chemical. It improves the function, it solves the problem. Though it slightly distance biological ourselves from what we though we were.

Prosthetics

It happens that people lose body parts. It is right way to go to give them missing parts. It’s still very complicated, the technologies involved are still not there, but good progress has been made. There are new materials, new mechanics, new production (digital manufacturing, 3D printing), new bio-signal processing (complex myogram readings), new software designed (with AI), and all together it gives tangible result. Take a look at this robot, integrated with the man:

Some ethical questions emerge. The man with prosthetic body part is still a biological being? What is a threshold between biological parts and synthetic parts to be considered a human being? There are people without arms and legs, because of injuries or because of genetic diseases, like Torso Man. We could and should re-create the missing parts and continue living as before, using our new parts. Bionic parts must evolve until they feel and perform identically to original biological parts.

It relates to invisible organs too. The heart, which happen to be a pump, not a soul keeper. People live with artificial hearts. Look at the man walking out from hospital without human heart. The kidneys, which are served by external hemodialysis machines. New research is performed to embed kidney robots into the body. Ethical questions continue, where is a boundary what we call a ‘human’? Is it head? Or brain only? What makes us human to other humans?

Genetics

We are defined by our genes. Our biological capabilities are on genes. Then we learn and train to build on top of our given foundation. We are different by genes, hence something that is easy for one could be difficult for another. E.g. since childhood sportsmen usually have better metabolism in comparison to those who grow to ‘office plankton’.

There are diseases caused by harmful mutations on genes. Actually any mutation is bad, because of unpredictable results in first generation with new mutant [gene]. But some mutations are bad from generation to generation, called genetic disease. It is possible to track many diseases down to the genes. There are Genetic Browsers allowing to look into the genome down to the DNA chain. Take a look at the CFTR gene, first snapshot is high-level view, with chromosome number and position; second is zoomed to the base, with ACGT chain visible.

CFTR1

CFTR2

If parents with genetic disease want to prevent their child from that disease, they may want to fix the known gene. Everything else [genetically] will remain naturally biological, but only that one mutant will be fixed to the normal. The kid will not have the disease of ancestors, which is good. A question emerges: is this kid fully biological? How that genetic engineering impacts established social norms?

What if parents are fans of Lance Armstrong and decide to edit more genes, to make their future kid a good sportsman?

What is Life?

Digging down to the DNA level, it is very interesting to figure out what is possible there to improve ourselves, and what is life at all. How to recognize life? How would we recognize life on Mars, if it’s present there?

Here is definition from Wikipedia: “The definition of life is controversial. The current definition is that organisms maintain homeostasis, are composed of cells, undergo metabolism, can grow, adapt to their environment, respond to stimuli, and reproduce.” The very first sentence resonate with questions we are asking…

Craig Venter led the team of scientists to extract the genetic material from the cell (Mycoplasma genitalium), instrumented its genome by inserting the names of 20 scientists and the link to the web site, implanted edited material back into the cell, observed the cell reproducing many times. Their result – Mycoplasma laboratorium – reproduced billions times, passing encoded info through generations. The cell had ~470 genes.

What is absolutely minimum number of genes, and what are those genes, to create life? Is it 150? Or less? And which one exactly? What are their specialization/functions? It’s current on-going experiment… Good luck guys! Looking forward to your research success, and what is Minimum Viable Life (MVL). BTW by doing this experiment, scientists designed new technologies and tools, allowing to model the genes programmatically, and then synthesize them at molecular level.

Here Come the Robots

While somebody are digging into the genome, others are trying to replicate humans (and other creatures) at macro level. Most successful with humanoid machines are Boston Dynamics.

rxqdzyg4m7cbmyhxl1rj

How far we are to make them indistinguishable from humans? Seems that pretty far. The weight, the gravity center, motion, gestures, look & feel are still not there. I bet that humanoids will be first create in military and porn. Military will need robots to operate plenty of outdated military equipment, serve and combat in hazard environments.  it’s only old weaponry that require manned control. While new weapons are designed to operate unmanned. Porn will evolve to the level that we will fuck the robots. For military it’s more the economical need. For our leisure it’s romantic need and personal experience.

The size and shape of robots doing mechanical work is so different. From tunnel drilling monsters to blood vessels…

All 8 Together

If we look for the commonality in mentioned (and several unmentioned) disrupting technologies, we could select 8 of them (extended and reworked 8 directions of Singularity Univeristy), which stand out:

  • Biology and Biotech
  • Medicine and Longevity
  • Robotics
  • Network and Sensors
  • Fabrication and 3D Printing
  • Nanotech and Materials
  • Computing
  • Artificial Intelligence

As we slightly covered Biology, Medicine and Robotics already, more to be said about the rest. But before than, few words about Biotech. We could program new behavior of the biomass, by engineering what the cells must produce, and use those biorobots to clean the landfills around the cities,  sewerage, rivers, seas, maybe air. Biorobots also could clean our organisms, inside and outside. Specially engineered micro biorobots could eat the Mars stones and produce the atmosphere there. Not so fast but feasible.

Well, more words about other disrupting technologies. Networks and Sensors next. First of all – it’s about networks between human & human, machine & machine, human & machine. The network effect happens within the network, known as Metcalfe’s Law. Networks are wired and wireless, synchronous and asynchronous, local and geographically distributed, static and dynamic mesh etc. Very promising are Mesh Networks, allowing to avoid Thing-Cloud aka Client-Server architectures, despite all cloud providers pushes for that. Architecturally (and common sense) it’s better to establish the mesh locally, with redundancy and specialization of nodes, and relay the data between the mesh and the cloud via some edge device, which could be dynamically selected.

Sensors will be everywhere. Within interior, on the body, as infrastructure of the streets, in ambient environment, in the food etc. Our life is improved when we sense/measure and proactively prepare. We used to weather forecasts, which are very precise for a day or two. It’s because of huge amount of land sensors, air sensors, satellite imagery. Body sensors are gaining popularity, as wearables for quantified self. There are recommendations for the lifestyle, based of your body readings. It’s early and primitive today, but it will dramatically improve with more data recorded and analyzed. Modern transportation requires more sensors within/along the roads and streets, and cars. It’s evolving. Miniaturization shapes them all. Those sensors must be invisible for the eyes, and fully integrated into the cloths and machines and environment.

3D Printing. The biggest change is related to ownership of intellectual property. 3D model will be the thing, while its replication at any location on demand on any printer will be commodity function. Many things became digital: books, photos, movies, games. Many things are becoming digital: hard goods, food, organs, genome. It’s a matter of time when we have cheap technology capable to synthesize at the atom grid level and molecular. New materials are needed everywhere, especially for human augmentation, for energy storing and for computing.

Nanotech. We learn to engineer at the scale of 10^-9 meter. From non-stick cookware and self restoring paint (for cars), to sunscreen and nanorobots for cleaning our veins, to new computing chips. Nano & Bio are very related, as purification and cleanup processes for industry and environment are being redesigned at nano level. Nano & 3D Printing are related too, as ultimate result will be affordable nanofactory for everyone.

Computing. We’re approaching disruption here, Moore’s Law is still there but it’s slowing down and the end is visible. Some breakthrough required. Hegemony of Intel is being challenged by IBM with POWER8 (and obviously almost ready POWER9) and ARM (v8 chips). Google is experimenting with POWER and ARM. it’s true, Qualcomm is pushing with ARM-based servers. D:Wave is pioneering Quantum Computing (actually it’s superconductivity computing). There is good intro in my Quantum Hello World post. IBM recently opened access to own quantum analog. The bottom line is that we need more computing capacity, it must be elastic, and we want it cheaper.

Artificial Intelligence. AI deserves separate chapter. Here it is.

Artificial Intelligence

I blended my thoughts and my impressions from The Second Machine Age, How to Think About Machines that Think, forthcoming The Inevitable, and various other sources that had impact on me.

AI

The purpose of AI was machine making decisions ( as maximization of reward function). But being better at making decisions != making better decisions. Machine decide how to translate English-to-Ukrainian, but not speaking either language. Those programs (and machines) are super screwdrivers, they don’t what to do, we want them to do, we put our want into them.

AI is different intelligence, human cannot recognize 1 billion humans, even really having seen them all many times. AI is Another Intelligence so far. The shape of thinking machines is not human at all: DeepBlue – chess winner – is a toll black box; Watson – Jeopardy winner – 2 units of 5 racks of 10 POWER7 servers between noisy refrigerators in nice alien blue light (watch from 2:20); Facebook Faces – programs and machines recognizing billions of human faces – it’s probably big racks in data center, Google Images – describing context of the image – big part of the data center (detection of cat took 16,000 servers several years ago); Space Probes – totally different from both humans and black toll boxes in the data centers.

BTW if somebody really spots UFO visiting our planet, don’t expect green men, as organics is poor for space travel, because of dangerous +200/-200 Celsius temperature range, ultra violet and radiation, time needed for travel (even through the wormhole)… That UFO is a robot most probably. Or intelligence on non-biological carrier, which means post-biological species (which is worse for us if so).

Our wet brain operates at 100 Watts, while the copy of the simulation of the same number of cells requires 10^12 Watts. Where on Earth will we get 1 trillion watts just for equivalent of one human intelligence? Even not intelligence, but connectivity of the neurons. Isn’t it ridiculous pseudo architecture? We still did not isolate what we call consciousness, and we don’t know it’s structure to properly model it. Brain scanning is in progress, especially for deeper brain. And this Eureka moment, like we got with DNA, is still to come.

We’re remaining at the center, creating and using machines for mental work, like we created and used/use machines for physical work. Humans with new mental tools should perform better than without them. Google is a typical memory machine, and memory prosthesis. Watson as a layer or a doctor is a reality.

Back from the future, at present we have intelligent machines – governments and corporations. We created those artificial bodies many years ago, and just don’t realize they are true intelligent machines. They are integrated into/with society, with law evolved through precedents and legislation, tailored to different locations and cultures. Culture itself is a natural artificial intelligence. Global biological artificial intelligence emerged on politicians, lawyers, organizations like United Nations and hundreds of smaller international ones. They are all candidates for substitution by programs and machines.

Interesting observation is that most intelligent humans neither harmful nor rulers of others. Hence we could assume that really smart AI will not be harmful to humans, when AI will be approximately at our level. But it’s uncertain about accelerated and grown AI later in time. Evolution will shape AI too, continuing from invisible interfaces with machines right now. We could stop clicking, typing, tapping into machines, and talk to them like we do between ourselves. Today we have three streams of AI: < 3yo AI, Artificial Smartness, Intelligence as a Service.

We are what we eat, hence they will have to eat us? Hm… Real AI will not reveal itself. And most probably they will leave, like we left our cradle Africa…

Exponential Today

There were some concerns that we had slowed down, by observations and perception of the daily facts. But it’s also visible that several technologies are booming and disrupting our lives almost on weekly basis. Those 8 mentioned earlier technologies in section It All Together. Those technologies are developing exponentially.

The companies are highly specializing within their niches, performing at global scale. Global economy is changing. Few best providers of the narrow function do it world-wide. E.g. Google is serving search globally, with two others far behind (Baidu and Bing, with artificial restriction of Google in China). Illumina chips are used for gene sequencing (90 percent of DNA data produced). Intel chips are primary host processors in the servers. Nvidia are primary coprocessors and so on. Few companies fulfill the 95+ percent of the needs within some niche. Where this has not happen yet, big disruption is expected soon.

before_now

This is pure specialization of work at global scale. Shift from normal distribution to power distribution. Some may say that it’s path to global monopolism, with artificially hold high costs. But in fact it is not, as Google search is free. Illumina is promising full human genome sequenced under $1,000. And Intel still ships new chips according to Moore’s Law, 2x productivity per $1 every 1.5 year.

As global specialization reduces global costs, because same functions and products are produced more efficiently on same resources, it is good for our planet, with limited resources. But here another thing happens, we are not preserving resources, we are using them for creating new technologies, which are expensive, unique, disrupting. Provider of such new technology (and product, service) is not a monopolist, because of small scale/capacity at the beginning. Either they scale or others replicate it, and true leader emerges and make it globally. Also new ways for energy are found, from Sun and wind, and new nuclear too. We’re creating more wealth.

now

Digitization

Scaling globally is dramatically easier and cheaper  for digital products and services, than for physical/hard or hybrid. It is main motivator for digitization of everything. Software is eating the world, because it is simply cheaper to deliver sw vs. hw. Everything will become software, except the hardware to run the software, and power plants to empower the hardware.

Real life is becoming digital very fast. Why we’re taking photos of our meals and rooms, self faces and legs, beautiful  and creepy landscapes, compositions? Why we checkin, express status, emotions for others’ expressed statuses, commenting, trolling and even fighting digitally? We also voting, declaring, reporting, learning, curing, buying and consuming, entertaining digitally too. We’re living digitally more than physically sometimes. Notice how people record the event looking at their smartphone small screen instead of looking at the big stage and experience it better. Some motivation drives us to record it to multiple phones, from multiple locations, aspects, angles, distances, and push it into the internet, and share with others. Then see it all from those recordings, own and theirs. Why is it happening? Why we are shifting to digital over natural? Or digital is new natural, as evolution goes on?

Kit Harington was stopped by cop for speeding. The cop made ultimatum – either driver pays fine, or he tells whether Jon Snow is alive in next season. The driver avoided the speeding ticket by telling the virtual/digital story to the cop. For the cop digital virtual was more important than physical biological. Isn’t it natural shift to new better reality?

Many people live is virtual worlds today. Take American and ask about ISIS. Take Syrian and ask about ISIS. Take Ukrainian and ask about Crimea and Donbass. Take Russian and ask about Crimea and Donbass. Same for Israel and Palestina. People will tell opposite everything. People are already living in virtual worlds, created by digital television and internet. Digitization of life is here already, and we are there already.

One

Specialization is observed at all levels. Molecules specialized into water, gases, salts, acids. Bigger molecules specialized into proteins and DNA. Then we have cells, stem cell and their specialization into connective tissue, soft tissue, bone and so on. Next are organs. Then body parts. Specialization is present at each abstraction level. At the level of people specialization is known as roles and professions. Between businesses and countries it is industries. Between nations it is economics and politics.

It looks like we are part of the bigger machine, which is evolving with acceleration. We are like cells, good and bad, specialized from vision to thinking. Roads, pipes are like transportation systems for other cells and payload. Internet (copper and fiber) is more like a neural system. Connectivity is a true phenomenon. We are now fully disconnected (and useless) without smartphone, or without digital social network in any form. Kevin Kelly once called it the One. The Earth of many people will evolve into earth of augmented people and machines, they all specialize and unite into the One.

one

And since the One, it all looks like just a beginning. I feel another One, and more cells-ones, organizing something more complex and intelligent from themselves. If our cells could specialize and unite into 10 trillions and walk, think, write, why it can’t be possible with bigger cells like One, at bigger scale like Galaxy?

The Man is not the last smart species on Earth. In other words, there will be a day, when the Last [current] Man on Earth goes extinct. What will happen faster: transhuman or true AI, that could replicate and grow? I bet on transhuman. Better for humanity too. For now.

 

Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Transformation of Consumption

Some time ago I’ve posted on Six Graphs of Big Data and mentioned Consumption Graph there. Then I presented Five Sources of Big Data on the data-aware conference, mentioned how retailers track people (time, movement, sex, age, goods etc.) and felt the keen interest from the audience about Consumption Data Source. Since that time I’ve thought a lot about consumption ‘as is’. Recently I’ve paid attention to the glimpses of the impact onto old model from micro-entrepreneurs, who 3D-prints at home and sell on Etsy. Today I want to reveal more about all that as consumption and its transformation. It will be much less about Big Data but much more about mid term future of Economics.

The Experience Economy

It was mentioned 15 years ago. The experience economy was identified as the next economy following the agrarian economy, the industrial economy, and the most recent service economy. Here is a link to 1998 Harvard Business Review, “Welcome to the Experience Economy”. Guys did an excellent job by predicting the progression of economic value. The experience is a real thing, like hard goods. Recall your feelings when you are back to the favorite restaurant where you order without looking into the menu. You got there to repeat the experience. Hence modern consumption is staged as experience, from the services and goods. Personal experience is even better. Services and goods without staging are getting weaker… Below is a diagram of the progression of economic value.

ExperienceEconomy

It would be useful to compare the transformation by multiple parameters such as model, function, offering, supply, seller, buyer and demand. The credit goes to HBR. I have improved the readability of the table in comparison to their. There is a clear trend towards experience and personalization. Pay attention to the rightmost column, because it will be addressed in more details later in this post.  To make it more familiar and friendly for you, I’ll appeal to your memories again: recall your visits to Starbucks or McDonalds. What is a driving force behind your will? How have you gained that internal feeling over past periods? Multiple other samples are available, especially from the leisure and hospitality industry. Pioneers of new economics are there already, others are joining the league. And yes… people are moving towards those fat guys from WALL-E movie…

comparizon

The Invisible Economy

Staging experience is not enough. Starbucks provides multiple coffee blends, Apple provides multiple gadgets and even colors. But it is not enough. I am an example. I need curved phone (suitable for my butt shape, because I keep it in the back pocket). Furthermore, I need a bendable phone, friendly for sitting whet it’s in the pocket. While majority of manufacturers-providers are ignoring it, LG is planning something. Let’s see what it will be, there is evidence of curved and flexible one. But I am not alone with my personal [strange?] wills. Others are dreaming of other things. Big guys may not be nimble enough to catch the pace of transforming and accelerated demand. It’s cool to be able to select colors for New Balance 993 or 574, but it’s not enough. My foot is different that yours, I need more exclusivity (towards usability and sustainability) than just colors. Why not to use some kind of digitizer to scan my foot and then deliver my personal shoes?

“The holy place is never empty” is my free word translation of Ukrainian proverb. It means that opportunity overlooked by current guys is fulfilled by others, new comers. There is a rising army of craftsmen and artists producing at home (manually of on 3D printers) and selling on Etsy. Fast Company has a great insight on that: “… Micro-entrepreneurs are doing something so nontraditional we don’t even know how to measure it…” There are bigger communities, like Ponoko. It is new breed of doers, called fabricators. And Ponoko is a new breed of the environment, where they meet, design, make, sell, buy and interact. The conclusion here is straightforward – our demand is fulfilled by new guys and in different way we used to. You can preview 3D model or simulation being thousand miles away and your thing will be delivered to your door. You can design your own thing. They can design for you and so on. And this economy is growing. Hey, big guys, it’s a threat for you!

The most existing in economy transformation is a foreseen death of banks. Sometimes banks are good, but in majority of modern cases they are bad. We don’t need Wells Fargo and similar dinosaurs. Amazon, Google, Apple, PayPal could perform the same functions more efficiently and make less evil to the people. There are emerging alternatives [to banks] how to fund initiatives, exchange funds between each other. Kickstarter and JumpStartFund are on the rise. Even for very serious projects like Hyperloop. Those things are still small (that’s why the section is called Invisible), but they are gaining the momentum and will hit the overall economy quite soon and heavy, less than in five years.

3D Printing

Here we are, taking digital goods and printing them into hard goods. Still early stage, but very promising and accelerating. MakerBot Replicator costs $2,199 which is affordable for personal use. There is a model priced at $2,799, which is still qualified for personal use. What does it mean for consumption? The World is being digitized. We are creating a digital copy of our world, everything is digitized and virtualized. Then digital can be implemented in the physical (hard good) on 3D printer. There are very serious 3D printers by Solid Concepts, that are capable to print the metal gun, which survives 500 round torture test. As soon as internal structure at molecular level is recreated and we achieve identical material characteristics, the question left is about cost reduction for the technology. As soon as 3D printing is cheap, we are there, in new exciting economy.

Let’s review other, more useful application of technology than guns. We eat to live, entertain to live good, and we cure diseases (which sometimes happen because of lifestyle and food). So, food first. 3D printed meat is already a reality. Meat is printed on bioprinter. Guess who funded the research? Sergey Brin, the googler. Modern Meadow creates leather and meat without slaughtering the animals. Next is health. The problem of waiting lists for organ exchange is ending. Your organs will be 3D printed. It is better than transplant because of no immune risks anymore. And finally, drugs. Recall pandemic situations with flue. Why you have to wait for vaccine for a week? You can 3D print your drugs from the digital model instantly, as soon as you download the digital model over the Internet. Downloaded and printed drugs is additional argument for Personalized Medicine in my recent post on the Next Five Years of Healthcare. I assume that answering essential application of technology to the basic aspects of life such as food, lifestyle and healthcare is sufficient to start taking it [technology] seriously. You can guess for other less life-critical applications yourself.

4D Printing

3D printing is on the rise, but there is even more powerful technology, called 4D printing. Fourth dimension is delayed in time and is related to the common environment characteristics such as temperature, water or some more specific like chemical. When external impact is applied, the 3D-printed strand folds into new structure, hence it uses its 4th dimension. It is very similar to the protein folding. There are tools for design of 4D things. One of them is cadnano for three-dimensional DNA origami nanostructures. It gives certainty of the stability of the designed structures. Another tool is Cyborg by Autodesk. It’s set of tools for modeling, simulation and multi-objective design optimization. Cyborg allows creation of specialized design platforms specific for the domains, from nanoparticle design to tissue engineering, to self-assembling human-scale manufacturing. Check out this excellent introduction into self-assembly and 4D printing by Skylar Tibbits from MIT Media Lab:

Forecast [on Consumption]

We will complete digitization of everything. This should be obvious for you at this stage. If not, then check out slightly different view on what Kevin Kelly called The One. No bits will live outside of the one distributed self-healing digital environment. Actually it will be us, digital copy of us. Data-wise it will be All Data together. Second reference will be to James Burke, who predicted the rise of PCs, in-vitro fertilization and cheap air travel in far 1973. Recently Burke admitted: “…The hardest factor to incorporate into my prediction, however, is that the future is no longer what it has always been: more of the same, but faster. This time: faster, yes, but unrecognisably different…” And I see it in same way, we are facing different future than we used to. It’s a bit scary but on the other hand it is very exciting. In 30 years we will have nano-fabricators, which manipulate at the level of atoms and molecules, to produce anything you want, from dirt, air, water and cheap carbon-rich acetylene gas. As you may already feel, those ingredients are virtually free, hence production of the goods by fabricator is almost free. Probably food will be a bit more expensive, but also cheap. By the way, each fabber will be able to copy itself… from the same cheap ingredients. We will not need plenty of wood, coal, oil, gas for nanofabrication. This is good for ecology. But I think we will invent other ways how to spoil Earth.

The value will shift from equipment to the digital models of the goods. Advanced 3D (and 4D models) will be not free; the rest will be crowdsourced and available for free. Autodesk, not a new company, but one of those serious, is a pioneer there with 123D apps platform. They are moving together with MakerBot. You can buy MakerBot Replicator on Autodesk site and vice versa, you will get Autodesk software together with MakerBot you bought elsewhere. It’s how it all is starting. In few years it will take off at large scale. Then we will get different economy, with much personal, sustainable and sensational consumption.

It would be interesting to draw parallels with the creation of Artificial Intelligence, because in 2030 we should have human brain simulated on non-biological carrier. Or may be we will be able to 4D or 5D-print more powerful brains than human on biological, but non-human carrier? Stay tuned.

Tagged , , , , , , , , , , , , , ,